Another equation for D_0 has been proposed by Zener³⁹ who treated the impurity jump as an equilibrium thermodynamic process:

$$D_{0} = \delta \alpha^{2} \vee \exp\left(\frac{\Delta S}{R}\right) \tag{11}$$

In this equation, a is the lattice constant, \checkmark is a characteristic frequency which is not well defined but usually taken to be the Debye frequency, \checkmark is a geometric constant equal to 1 for both interstitial and vacancy diffusion in a fcc lattice, and \triangle S represents the entropy increase of the system due to adding one mole of activated complexes.

Using equation 11 and a known value of the isothermal compressibility (K), it can be shown that, to first order:

$$\frac{D_{o}(P)}{D_{o}(O)} = \left(I - \frac{K}{3}P\right)^{3/2} e_{X}P\left(\frac{\Delta S(P) - \Delta S(O)}{R}\right) \quad (12)$$

Using the graphically determined values of D_0 , along with Zener's expression for ΔS at zero pressure:

$$\Delta S = \lambda \beta \frac{Q}{T_{m}} \tag{13}$$

(Where β is a dimensionless quantity equal to .5 for lead; and λ is an empirical constant equal to .55 for vacancy diffusion in a fcc lattice, and equal to 1 for interstitial diffusion), the following values are obtained:

Pressure	$\Delta S(P) - \Delta S(0)$	 $\triangle S(P) *$	△ S(P) **
Kilobars	cal/mole ^O K	cal/mole ^O K	cal/mole ^O K
0.0	0.0	7.26	13.22
12.0	+ 0.03	7.29	13.25
17.5	- 0.27	6.99	12.95
22.5	- 1.24	6.02	11.98
24.5	- 2.01	5.25	11.21
38.0	- 2.08	5.18	11.14

* vacancy mechanism

** interstitial mechanism